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A variational formulation of water waves is developed, based on the Hamiltonian 
theory of surface waves. An exact and unified description of the two-dimensional 
problem in the vertical plane is obtained in the form of a Hamiltonian functional, 
expressed in terms of surface quantities as canonical variables. The stability of the 
corresponding canonical equations can be ensured by using positive definite 
approximate energy functionals. While preserving full linear dispersion, the method 
distinguishes between short-wave nonlinearity, allowing the description of Stokes 
waves in deep water, and long-wave nonlinearity, applying to long waves in shallow 
water. Both types of nonlinearity are found necessary to describe accurately large- 
amplitude solitary waves. 

1. Introduction 
When wind-generated sea waves approach shallow water, various physical 

processes influence the wave field, i.e. shoaling, refraction by depth and current 
variations, diffraction, nonlinear effects such as the transfer of energy between 
spectral components, and energy dissipation due to wave breaking and other 
mechanisms. In  order to predict the transformation of wave properties in coastal 
areas, shallow-water wave models should be able to account for these effects. For 
that purpose, a number of model equations have been developed during the last two 
decades, largely based on linear wave theory (see Dingemans 1992 for a review). 

However, because of the frequent occurrence of steep unsteady waves in nature, 
a nonlinear theory is needed which is capable of describing waves of limiting height, 
and is uniformly valid from deep to shallow water. In  most existing wave theories it 
is assumed that the (steady) wave motion is irrotational, and the fluid inviscid and 
incompressible, which allows the introduction of a velocity potential. Apart from 
methods based on direct numerical solution of the governing exact equations (such 
as Fourier methods, cf. Schwartz & Fenton 1982), these theories divide into two main 
groups, namely Stokes wave theories and shallow-water wave theories (including 
cnoidal wave theory). Low-order Stokes theory is suitable to describe short waves, 
characterized by the condition that the ratio of the mean water depth to wavelength, 
h/L,  is not much smaller than one, i.e. h/L 2 1/10. Shallow-water theories are 
expected to be valid for longer waves, h/L @ 1 (for details, see Dingemans 1992). 

Several attempts to develop a uni$ed theory of water waves have been made in the 
past, to combine deep- and shallow-water effects and obtain a greater range of 
validity. Whitham (1967, 1974) proposed an extension of the Korteweg-de Vries 
equation in the form of an integro-differential equation, which combines full linear 
dispersion with long-wave nonlinearity, and he showed that this equation exhibits 
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the desired features of wave peaking and breaking in shallow water. Witting (1984) 
described an extension of Boussinesq-type theory with high-order dispersion, thus 
making the model capable of treating a wide variety of physical situations, e.g. high 
solitary waves and undular bores. Inspired by this work, Madsen, Murray & Ssrensen 
(1991) further improved and extended the classical Boussinesq equations for two 
horizontal dimensions ; numerical results were given for wave propagation and 
diffraction in relatively deep water. Yasuda, Ukai & Tsuchiya (1989) presented a 
Kortewegde Vries-type model equation which rigorously satisfies the linear 
dispersion relation, and applies to swell with an arbitrary spectrum. Shields & 
Webster (1988) proposed a direct method, based on ‘the theory of directed fluid 
sheets’, in which the flow field is not irrotational; this leads to a hierarchy of 
approximate theories of increasing complexity, and solitary and periodic wave 
solutions show a significant improvement in comparison with the classical shallow- 
water approximations. 

The present work is concerned with a Hamiltonian formulation of the water-wave 
problem. Zakharov (1968) was the first to  note that the exact equations for wave 
motion in a perfect fluid constitute a dynamical system with a positive definite 
Hamiltonian functional (which represents the total energy of the fluid), i.e. the 
surface elevation and the velocity potential a t  the free surface are canonical variables 
in Hamilton’s sense. This formalism was extended to arbitrary depth by Broer (1974) 
and Miles (1977). A systematic account of the symmetries and the corresponding 
conservation laws was given by Benjamin & Olver (1982) ; their results were deduced 
in a more simple way by Longuet-Higgins (1983). The theory is not necessarily 
restricted to irrotational flow or flow of uniform density (see Henyey 1983; Benjamin 
1984; Lewis et al. 1986; Abarbanel, Brown & Yang 1988). A distinct advantage of the 
Hamiltonian formalism is that  approximations which maintain the symmetries of 
the flow will automatically preserve the corresponding conservation laws. All 
complexities are contained in the calculation of the energy, and stability and 
bifurcation properties of water waves are related to  the Hamiltonian structure of the 
problem and its symmetries (cf. Zufiria 1987 ; Saffman 1988). Further, any positive 
definite approximate Hamiltonian guarantees good dynamical behaviour of the 
corresponding canonical equations, i.e. stability of computer solutions for long 
periods of time (Broer 1974, 1975). The formalism is compatible with a deterministic 
as well as a stochastic description (Goldstein 1980; West et al. 1987, and references 
therein). Several equivalent formulations of the theory can be obtained by means of 
canonical transformations (Broer & Kobussen 1972 ; Milder 1977 ; Benjamin 1984). 

A description of the canonical theorem for the complete water-wave problem is 
given in $2. The two-dimensional problem in the vertical plane is considered in $3; 
it leads to a unified Hamiltonian description of short and long waves and the 
corresponding nonlinearities, in water of arbitrary uniform depth. Special cases for 
gravity waves are dealt with in $4, namely deep water (Stokes waves) and shallow 
water (fairly long and solitary waves) ; it turns out that  a clear distinction can be 
made between short-wave nonlinearity and long-wave nonlinearity. Finally, in $5 
some applications and extensions of the present method are discussed. 

2. Hamiltonian theory of surface waves 
We begin with a description of the complete water-wave problem and its 

Hamiltonian formulation. Irrotational wave motion on the surface of an in- 
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compressible inviscid fluid of uniform density is considered. The velocity potential 
@(x, y, z, t )  satisfies the Laplace equation 

a2Qi 
V2@+- = 0, 

a22 

with boundary conditions 

(2) 
a@ 
a Z  
-+Vh.VQi = 0 at z = -h ( z , y ) ,  

and ( 3 4  

where [ (x , y , t )  is the surface elevation which is assumed to remain a single-valued 
function of horizontal position (cf. Benjamin & Olver 1982), h(z ,  y) is the position of 
the (uneven) bottom, V = (a/az, a/ay) is the horizontal gradient-operator, g is the 
acceleration due to gravity, and 7 the coefficient of surface tension. We note that the 
motion is fully determined by the surface elevation [ ( z , y , t )  and the value of the 
velocity potential at  the free surface, 

(4) 
When [ and q5 are known, Qi is given as the unique solution of the linear boundary- 
value problem (l), (2), and @ = q5 a t  the boundary z = [. 

In the Hamiltonian theory of the problem (1)-(3), we consider the total energy of 
the fluid (omitting the uniform density as a factor) to be 

q 5 k  y, t )  = Qi@, y, a x ,  y, t ) ,  t ) .  

where V is the potential energy density, T the kinetic energy density, and H = V + T 
is the Hamiltonian density. 

The canonical theorem states that [ and q5 are canonical variables, with &‘([, q5) as 
the corresponding Hamiltonian functional. The canonical equations 

where 6 denotes the variational derivative, are equivalent to the exact free-surface 
boundary conditions (3), with the Laplace equation (1) and the bottom boundary 
condition (2) as constraints (cf. Zakharov 1968; Broer 1974; Broer, van Groesen & 
Timmers 1976; Miles 1977). Equivalent formulations of the theory can be obtained 
by means of canonical transformations (Broer & Kobussen 1972). 

The essential difficulty in the application of (5 ) ,  (6 )  is to find an explicit expression 
for the kinetic energy density 

T = -h ~ Z [ ( P @ ) ~ + ~ ~ ] ,  (7) 
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as a functional of 5 and 4. The formal solution of this problem is discussed by Milder 
(1977), and approximate results have been obtained by several authors (see Miles 
1981 for a review ; Radder & Dingemans 1985 ; Neyzi & Nutku 1987 ; Creamer et al. 
1989). To facilitate the analysis we use Green’s theorem to write (7)  in the form 
(Miles 1977) : 

Formally, it is possible to express a[/;lat in terms of the surface quantities g and q5:  

3 = S ( 5 )  4 (9) at 

where 9 is a non-local operator which is linear in its effect on q5 but depends 
nonlinearly on [ (cf. Milder 1977). 

I n  the next section, the two-dimensional problem in the (5, 2)-plane is considered, 
in which case analytic function theory can be used to simplify the analysis. For a 
horizontal bottom, an exact Hamiltonian formulation is given in which the vertical 
coordinate z is explicitly eliminated. 

3. Explicit formulation of the two-dimensional problem 

complex potential (cf. Lamb 1932, Art. 62) 
When the flow is two-dimensional, the wave motion can be described by the 

(10) 

where the complex function F is an analytic function of 2 = x + iz, and Y denotes the 
stream function. Using the Cauchy-Riemann relations for @ and Y7 we may write 
the kinematic free-surface condition (3a) in the form 

F ( 2 ,  t )  = @(x, z ,  t )  + iY(z, z,  t ) ,  

at 

where @ is defined as the stream function at the free surface, 

$(x, t )  = W Z ,  6(x ,  0 ,  t ) .  (12) 

(Note that (1  1) defines a local conservation law for the mass density [ and the mass 
flux $, cf. Broer et al. 1976). From (8) and (11) the kinetic energy density becomes 

where the second expression is a result of integration by parts. In  order to express 
$ in (13) in terms of the canonical variables [ and 4, the fluid domain is mapped 
conformally into an infinite strip in the complex W-plane (cf. figure 1). The 
transformation is given by (cf. Woods 1961, 53.16) 

Z(W) = - tanh[$(W-x’)][(~’)d~’+- coth[in(W-x’)]h(~’)d~’ (14) 

(where the integrals are defined by j -”, . . . = limA+m -A . . .). The solution procedure 
to find Y a t  the surface consists of two steps: (i) solve the problem in the W-plane; 

2 -m 

A 

2 ‘.r -m ‘lm 
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(4 z 

FIQURE 1.  (a) Physical and ( b )  transformed coordinates. 

(ii) find the inverse transformation ~ ( x )  along the surface. Without loss of generality, 
we take Y = 0 at the bottom z = -h. 

3.1. Solution of the problem in the W-plane 
In the first step we solve the linear problem 

a 2 y  a 2 y  -+-=o, O < E < l ,  
a x 2  a p  

y = o  at E=04 
Y = @ ( x )  at E =  1 , )  

by means of Fourier transforms (cf. Byatt-Smith 1970; Davies 1985). If we take the 
Fourier transform of (15) with respect to the variable x, we obtain 

with solution 
A tanhtcgaY 

!P(K, 5) = A sinh K [  = -- 
K age 
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Using the Cauchy-Riemann relation aY/ag = a@/ax and the convolution theorem, 
we have 

which becomes, for E = 1, 

To express (20) in terms of variables in the physical plane, we need an expression for 
the function ~ ( x )  along the surface. This is accomplished in the second step. 

3.2. Solution of the inversion problem 
The imaginary part of the transformation (14) is given by (cf. Abramowitz & Stegun 
1968, $4.5.51/52 ; Byatt-Smith 1971) 

The Fourier transform of (21) with respect to  x is 

We can evaluate the integrals using (cf. Gradshteyn & Ryzhik 1980) 

cospxdx sinh(pq/n) 
sinh p sin q 

- - , o < q < n ,  cash xx + cos q 

to find 

Differentiation with respect to gives 

Using the Cauchy-Riemann relation axlax = and the correspondence 
K = ia/ax we derive the symbolic operator equation, for (+ 1 : 

4x) = [l / tan (d/dX)I a x )  + [l/sin (d/dX)I W ) .  (26) 
We are now faced with the problem of inverting the operator equation (26) to obtain 
the function ~ ( x ) .  

In order to simplify the analysis, we assume henceforth that the bottom is 
horizontal, i.e. h is constant. Defining the local depth 

(27) T(X) = h + a x )  

we obtain from (26) dx d 
- = 
dX dX 
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An integral representation of (28) is given by 

which can also be directly derived from (21) by taking the derivative with respect to 
l ,  in the limit of l+ 1.  To solve the nonlinear integral equation (28), it needs to be 
expressed in terms of more simple operators, e.g. through a series expansion 

This expansion is (formally) convergent for values of the argument Ild/dXII < x ,  
which is not suitable in case of deep water. Therefore we consider here an expansion 
in partial fractions (cf. Abramowitz & Stegun 1968, 84.3.91) : 

l +  
dx “ d  

d/dX-mmx d/dX+mn 

which is valid for all values of the argument. We introduce the variable p and the 
operator D 

and define the function E ( X )  according to 

dx - = ( 1  + “ ) T .  
dX 

Then we have d/dX = (1 + e )  D, and the expansion (31) becomes 

s = - ( ~ + s )  c. D [(l +e)D-mz 1 + (1 + ~ ) D + m z  3”. W 1 

9 m-1 

(33) 

(34) 

In order to solve this equation for the unknown function E ( X )  we define the operators 
G:m) and GI;“) by 

D . 3 - 1 G:m) -= D 
(l+E)D-mx’ D-mlr’ (35) 

and try to express G!m) in terms of Gim). We have the operator identity? 

(36) 
1 

[( 1 + E )  D - m~ -ED] 
D - -- - 1 

(l+E)D-mmx D-mx (1 + E )  D - m~ ’ 
D 

hence GBm) = Gim)( 1 - cGdm’). (37) 
This is an integral equation in Gtm), which can be solved by iteration to yield 

Substituting (38) into (34) : 
m 

8 = ( 1 + E )  c. (--1)AIA, 
A-0 

(39) 

t In quantum mechanics, a similar technique has been employed in the method of stationary 
perturbations (cf. Messiah 1969, Chap. XVI, Sec. 111). 
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we are able to solve (34) by iteration: 

s ,=o;  €1 = I o / ( l - I o ) ;  E Z =  (IO-I1)/(l-IO+I1);.... (41) 

To evaluate the integrals IA we need an integral representation of the operators Ghm) 
and G$-m) in (40). The result is (cf. appendix A for the details): 

in which E should be approximated by el ; . . . and so on. 
In case of finite-depth water, we have IlDll < n, and we may expand Gim) in a series 

and likewise Gl;m). To express the expansion (39) in this case in a more convenient 
form we introduce the functions F,) k = 0 , 1 , 2 . .  . as follows : 

(44) 
1 Fk = -Dky; 
7 

F, = 1.  

From (32) and (44) we have the recursion relations 

and 

D(7Fk) = qFk+lj 
DF, = Fk+l-FkFl. 

On substituting (43) into (39), (40) and using the relations (45) for F,, it  follows that 
e can be expanded in terms of these functions Fk ; up to fourth order in q we get 

E = -&-&(F4-5F3 Fl - 1OFi + 5F2 Fi)  - . . . . (46) 

This result can also be deduced from the expansion (30), and a representation of (46) 
in terms of 7 and its derivatives is given in appendix B. From this, a similar 
expansion of the expression 1/(1 + E )  can be obtained easily. 

3.3. Discussion of the results 
To sum up, from (13), (20), (33) and (46) we have the following expression for the 
kinetic energy density : 

(474  
l r n  

= 25_, dx' $ x  $x'R&: x' ; 71, 

where the symmetric function R, is given by 

RE(x,x';q)  E 
7c (47 b )  
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We note that (47a) can be written in the form (8), (9) after integration by parts. 
Before presenting an analysis of some special cases, we shall first consider a useful 

property of the present formulation. We infer from (13) and (20) that the kinetic 
energy functional, as expressed in the 2-variable, is positive de$nite, i.e. its spectrum 
function is positive and bounded (cf. Broer 1974). This property is preserved on 
transforming from the X-variable to the x-variable provided the Jacobian (33) does 
not change sign ; a sufficient condition is 

9 > 0, and bounded, (48) dx 

except perhaps at isolated points. This condition is valid as long as the bottom is well 
covered (i.e. r] > 0) and wave breaking does not occur (i.e. 1 / ( 1 + ~ )  > 0). 
Consequently, any truncated expansion of the function B ,  whether given by (41) or 
(46), leads to stable model equations when (48) is satisfied, in view of the positive 
definite character of the corresponding approximate Hamiltonian functional. 

This is a distinct advantage over the classical methods such as the Stokes 
expansion, and other expansions reported in the recent literature. For instance, 
Milder (1990) has made a perturbation analysis of the alternative approach of West 
et al. (1987), which is based on an expansion of the Hamiltonian in a series in surface 
slope ; he found an exponentially growing instability for high wavenumbers when the 
series is truncated at low order. While this unphysical behaviour can be partly 
remedied by adding terms of higher order, it would not occur if it were possible to 
keep the approximate Hamiltonians positive definite. To that end, the present 
method is applicable, although it requires the numerical solution of integral (or 
integro-differential) equations. 

We now turn to some limiting cases, which correspond to the classical theories of 
Stokes and Boussinesq, without giving a rigorous asymptotic analysis. We will 
consider only gravity waves, neglecting the effects of surface tension. 

4. Special cases 
The formulation (47) is exact for two-dimensional wave motion in water of 

constant finite depth h. Consequently, both Stokes theory and Boussinesq theory are 
included as special cases. Almost trivially, the linear wave theory results by taking 
the surface elevation 6 infinitely small, so that in (47) B = 0 and 17 = h; then R, 
becomes 

1 R 

7t 4h 
RO(x,x’; h) = --ln tanh-ld-x1, (49) 

which is valid for low waves (cf. Broer 1974). 
In more general cases, the behaviour will depend on the rate of convergence of the 

expansion (39), which is given by IIeGkm)II < 1. First, let us consider weakly nonlinear 
waves. For deep water it turns out that this amounts to B = O(KU), where K a  denotes 
the wave steepness ( K  is the wavenumber, a the wave amplitude). Then Stokes theory 
is appropriate, 7 z h, and we have for RE: 

1 
RE(x, x’; h) = --ln tanh- 

R 

When the depth is finite, the expression (46) indicates that the expansion (30) is valid 

16 FLM 237 
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as long as K h  < x ,  i.e. up to fairly deep water. For shallow water we have E = O(K,?UZ), 
and Boussinesq theory is appropriate. Then we put E w 0, and we get for R,: 

1 
x 

R,(x,x’;~) = --ln tanh- 
Fh 1 1 & I 

Thus the function E(X) represents short-wave nonlinearity, while the relation C(x)/h 
accounts for long-wave nonlinearity. In case of strongly nonlinear waves, e.g. large- 
amplitude solitary waves, we may expect that E = O( 1 ) .  In particular, the expression 
1/(1 + E )  becomes zero at  a stagnation point. 

In the following paragraphs we will consider these cases in more detail. 

4.1. Stokes waves 

Restricting the analysis to deep water, K h  + 03, we look for periodic solutions with 
a steady profile, i.e. g and $ being periodic in the phase function 8(x,t), with 
wavenumber K = a8/ax and frequency w = - a8/at, both assumed to be constant. The 
Stokes expansion is taken as 

C( 8) = a, cos 8 + a, cos 28 + a, cos 38 + O @ ) ,  

$(8)  = b, sin 8+ b, sin28+ b, sin 38+ O(b:). 
( 5 2 4  

(52b)  

In order to find the coefficients a, and b,, we apply the ‘average variational 
principle ’ of Whitham (1974, $16.6) .  The Lagrangian density is in this case given by 

where RE(x, x’ ; h) is defined by (50) .  We propose to find the Stokes expansion (52)  up 
to the third order inclusive; so we need to compute L to the sixth order. To simplify 
the necessary integrations, we use a property of Dirichlet integrals : 

where f(0’) = 1imu+,f(u), and f(u) satisfies Dirichlet’s conditions (cf. Davies 1985). 
Then we obtain for the integrand in (50), as is shown in Appendix C, the 

expression : 

with 
i / ( i  + €1 = 1 -7, cos 8- 27, cos 28-  37, cos 38+ ~ ( a : ) ,  (55)  

7, = K U l ( l - K U , - ~ K 2 U ~ ) ,  7, = K U , - K U , ( K U 3 + ~ ~ z U l U , + ~ K 3 U ~ ) ,  y 3  = KU3. 

(For steady wave motion we may choose the velocity potential q5 as X-variable, and 
we have, apar’t from a factor K,/W : y, - b,, n = 1 , 2 , 3 , .  . . . This can serve as a check 
on the calculations.) 

Defining the new variables u = x(~’-x)/(4h) and v = 2 ~ h u / x ,  it follows from (50)  
and (55)  that 

(56)  
1 

R, = --ln tanh [lul(1+6(8, v))], 
x 

with 
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Expanding Re in a power series in 6, and using the property (54) we find for the 
kinetic energy density, in the limit of K h +  00 : 

1 r m  
T = -: K $ ~  j dv $,[ln tanh IuI + 6-$d2 +$Y -i#], 

-m x 

in which 8' = 8+2v. 
With the help of the integrals given in Appendix D, using the rules for products 

of sines and cosines, and taking the average over one period in 6 ,  the mean 
Lagrangian becomes 

9 = -+(a, b, + 2a2 b2 + 3a3 b,) +$(a: + +ax) 
+ iKb: [  1 + K a z  + iK%?( 1 - iK2c%,") + i K 2 U i ]  

+Kbl(b2- i fKal  b,) ( K a ,  + i K 2 a ,  a2 +&K3a!) +-?jKbi 4-i.b;. (59) 

Finally, the coefficients a, and b, can be found by variation of 9, which yields, to 
third order in KU,:  

w w 
K K 

6, = -a3;  a3 = i ~ ~ a : ;  b, = -a2;  a2 = -?j~ai ;  

The last expression in (60) is the Stokes dispersion relation for gravity waves. 
Thus we have shown that the present formulation, as it is given by (53), provides 

a correct description of third-order Stokes waves in deep water (see e.g. Fenton 
1985). 

4.2. Fairly long, fairly low wave8 
In  this case we are concerned with approximations which are valid when the 
parameters ,u = ~h and 01 = a/h  are small but finite, O(,uz) = O(a) Q 1. This implies 
that the effects of (long-wave) nonlinearity a and dispersion pa are of the same order 
(Boussinesq theory). Broer (1974, 1975) used the Hamiltonian formalism to obtain 
stable evolution equations of Boussinesq type; these equations can be derived from 
a Hamiltonian density of the form (cf. Broer 1975, equation 2.6): 

where R,(z, x ' ;  h) i s  defined by (49). 

formulation 
We will show here that (61) can be considered as a special case of the present 

where R & , X ' ; ~ )  is given by (51), and 7 = h+c.  For that purpose, we scale the 
variables in the usual way, as follows (of. Mei 1989, Chap. 11):  

15-2 
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Omitting the tildes, we obtain from (62) 

with 

m 

H = $F+AJ dx’q5xq5Z,Ro(x,x’;5,a,y), 
2 -m 

1 

zlu 
R,(x, X‘ ; f;, a, y )  = --ln tanh- 

Expanding (65) in a power series in a, we have 

f (x ’ -x ’ lu)  5: f;dr+O(a2), R,(x, x’ ; f;, a, y )  = --ln tanh- (x’-xI +a 
1 7r 

=y 4P XI-x 

As f ( z , y )  is normalized to unity, 

it defines the delta function when y tends to  zero (cf. Lighthill 1962) 

m y ) + “ ;  f ( Z , P ) + O ,  z * o .  

Consequently, for p and a sufficiently small, (64) becomes 

H = g++af;q5;+- 

which is identical to (61) in physical variables. 
From (70) i t  is seen that in Broer’s Hamiltonian (61) nonlinearity and dispersion 

appear in separate terms, which facilitates further analysis and approximations. 
Katopodes & Dingemans (1989), using model equations based on (61), performed 
some simple numerical tests, which demonstrate a remarkable improvement in short- 
wave stability over the classical Boussinesq- type equations. On the other hand, 
stability is not guaranteed for waves of large amplitude, because the Hamiltonian 
(61) need riot be positive definite in that case. For a more complete treatment of this 
problem, we refer to Broer et al. (1976). 

4.3. The solitary wave 
We now turn to the limiting case of the solitary wave of finite amplitude, when the 
parameter a is not assumed to be small. This problem has been the subject of 
extensive investigations (for a review, see Miles 1980, and Schwartz & Fenton 1982 
for further discussion). Being of permanent form, the solitary wave exhibits a 
balance between nonlinearity and dispersion, which is preserved up to the highest 
wave. We consider the Hamiltonian (62), which we repeat here for convenience, 

and the question arises whether (71) is suitable to  describe this case. Actually, this 
form combines full linear dispersion with long-wave nonlinearity, retaining terms 
of all orders in y and a. On the other hand, short-wave nonlinearity may possibly 
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play a part when B = O(1). In particular, it  is of interest to know to what extent the 
formulation (71) can describe the highest solitary wave with a sharp crest, enclosing 
an angle of 120”, and a maximum value of a, amax x 5/6 = 0.833. For that  purpose 
we need to study the corresponding canonical equations. In  Appendix E it is shown 
that these equations are given by 

_ -  dxl+x, In tanh 2 I d r / r  I , 

The analysis of these nonlinear integral equations is, however, difficult and it is 
therefore appropriate to  treat here first the more simple equations, which can be 
derived from Broer’s Hamiltonian (61) : 

a a m  

at ax ax -m 

_ -  a‘ - --(&I~~)--J dx/+x,Ro(x,x’;h), 

where R,(x, x’; h) is given by (49). 
While (73a, b) are valid for small values of the parameters p and a, i t  can be shown 

that equations of this form have solutions which peak at a critical height. We 
consider steady solitary-wave solutions in a reference frame moving with the wave 
speed c, 

and we let ‘ + O  and (s,+-c for X + f m .  
We normalize the variables according to 

‘(x, t) = C(X) ,  qqx, t) = +(X) + c X ,  x = x-ct, (74) 

x = X / h ,  z = [ / h ,  V = 1 ++x/c, c = c/(gh)$, (75) 

where C denotes the Froude number. 

conditions at infinity, we obtain an integral equation for the velocity V ( X ) ,  
Substituting (74) and (75) into (73), integrating once and taking into account the 

m 

Z ( X )  [ 1 - V ( X ) ]  = [ dY V (  Y) R,(X- Y), (76a) 

with 
J -m 

z = p V ( 2 -  V ) .  

The kernel in (76a) is normalized to unity, 

m 1 dYR,(X-Y) = 1, (77) 
J -m 

for all values of the variable X .  We look for solutions V(X) of (76), which are 
symmetrical with respect to the origin, with 0 < V(X)  < 1.  Apart from the trivial 
solution V, = 0, we have solutions of uniform flow, 

V, =t[3-(1+8/C2);], C 2  1, (78) 
and the solitary wave bifurcates from the case C = 1. 
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It follows from (76b) that the highest-possible wave occurs when V = 1, i.e. 
when the crest has a stagnation point, and the amplitude has a maximum value 
amax = Z,,, = gC2. This is a distinct quality of the limiting solitary wave. To see 
whether this phenomenon actually appears here, we differentiate (76a) with respect 
to X to yield 

- 

This equation is similar to the integral equation of Whitham (1967 ; 1974, sec. 13.14), 
who showed that an equation of this type can describe periodic and solitary waves 
with the desired peaking. Here, the derivative dV/dX becomes discontinuous at 
V,, = 1 - 5 4 3 ,  where Z,,, = $C2 according to (76b). From (76a) and (77) we have 
Z,,,( 1 - V,,,) c V,,,, and we obtain an upper bound for the amplitude 

(80) 

We have thus found that the solution of (73), while giving a qualitatively correct 
description of the solitary wave of moderate amplitude, does not tend to the limiting- 
wave solution with a stagnation point at the crest, as the Froude number increases. 
On the other hand, the preceding analysis suggests that the canonical equations (72) 
will provide a better description of this quality, and one might even conjecture that 
the Hamiltonian system (71) constitutes an exact model for the (un)steady solitary 
wave, up to the point of breaking. However, Zwartkruis (1991) transformed the 
equations (72) for the steady solitary wave to an integral equation of Hammerstein 
type for the surface profile Z; he solved this equation numerically and found 
solutions for values of the Froude number C as large as 5 ,  and presumably there exist 
solutions for all values of C 2 1. 

We may conclude that in order to describe accurately surface waves of maximum 
height, it is necessary to  take into account short-wave nonlinearity, which was 
neglected in the formulation (71). To this end, we shall derive an exact integral 
equation and obtain a numerical solution for the solitary wave of maximum 
amplitude. From (6a)  and (47a),  we have 

Z,,, < 4 3 -  1 = 0.732. 

- a‘ = -- a 
at ax dx’+xrRc(x,x’;T), 

where the kernel is given by (47b). 
An equivalent of (6b)  can be found by differentiating (4) with respect to  x and t ,  

and eliminating @JX, @Jz and at, taken a t  the surface, from the free-surface boundary 
conditions (3a, b ) .  The result is 

w / a t  = - s ‘ - g ~ ~ + a c s t + + x y , ) 2 / ( l + ~ 2 2 ) .  (81 b)  
The system of equations (81a, b )  thus represents a Hamiltonian system, which is 
exact for surface waves of arbitrary height. Assuming steady wave motion and 
taking coordinate axes moving with the wave speed c, we can replace the (x ,E)  
coordinates in figure 1 by - (@, IY)/hc coordinates. Consequently, 

(82) 
1 - dX = -__ i d + - p  - 

dx hcdx ( l + ~ ) y ’  
according to (33). 

integral equation for the surface profile Z(X), 
Changing to non-dimensional variables as before, we obtain from (81) and (82) an 
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with 

This equation 

Z(X) = -- 

W(X) = [(l -Z(X)/Z,,) (1 + (dz/dx)2)14 zmx = p. 
is equivalent to the integral equation of Byatt-Smith 

(83b) 

(1970) for the 
case of a non-periodic wave. His equation is expressed in terms of the velocity 
potential as independent variable, and exhibits a strong singularity in the integrand 
at the stagnation point. The advantage of (83) is that it is quasi-regular, while the 
wave profile is given explicitly by the solution Z(X). In order to find the value of the 
maximum amplitude Z,,,, we try to model the discontinuity in surface slope a t  the 
crest by writing (cf. Longuet-Higgins 1974; Pennell & Su 1984) 

N 

Z(X) = C Ane-nw, Z,, = Z(0). 
n-1 

(84) 

Herein, the N unknowns A, have to be found by satisfying (83) at the N mesh points 

X,  = ln(N/n) ,  n = 1, .. . ,N.  (85) 

The resulting system of N nonlinear equations is solved by Newton iterations. A 
fairly accurate solution (with an overall residual error less than 0.2% of ZmJ is 
found for N = 3 : 

A ,  = 1.190, A, = -0.460, A ,  = 0.104, (86) 

which gives a maximum amplitude Z,,, = 0.834 and an interior angle at the crest of 
119.5". For larger values of N ,  the method becomes unstable and an alternative 
method should be used (see e.g. Baker 1977, Chap. 5;  Baker & Miller 1982). 

5. Discussion and conclusions 
We have developed a variational formulation of water waves in the form of a 

Hamiltonian functional, providing an exact description of two-dimensional wave 
motion in water of constant finite depth h. An explicit expression for the kinetic 
energy density in terms of the surface quantities 7 and is given by (47); the 
corresponding (approximate) kinetic energy functional is positive definite on the 
condition (48), which guarantees stability of the resulting canonical equations with 
respect to short waves. Dependent on the behaviour of the local depth 7 = h + t; and 
its derivatives, we can discern short-wave nonlinearity, represented by the function 
~ ( x ) ,  and long-wave nonlinearity, on account of the relation t;(z)/h. For weakly 
nonlinear waves, it is found that 8 = O(KU) in deep water (Stokes theory), and 
B = O ( ~ ~ h a )  x 0 in shallow water (Boussinesq theory). For strongly nonlinear waves, 
B = O( 1 )  and both types of nonlinearity should be included in an accurate description 
of high solitary waves. In all cases, full linear dispersion is retained. 

In a similar way, we can treat the case of an uneven bottom by an expansion of the 
operator l/sin(d/dX) in (26) in partial fractions, analogous to (31). As a first 
approximation, we can just replace h with h(z) in the functional involved, for waves 
in water of slowly varying depth. Using this approximation in (71), Zwartkruis (1991) 
performed some preliminary numerical experiments, to study the evolution of a 
solitary wave passing over a submerged obstacle. While this problem needs further 
study, the results already indicate the robustness of the present method, even with 
simple numerical means. 

Finally, we mention some other applications and extensions of the method. Wave 
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steepening of long waves, leading to the development of an undular or turbulent 
bore, should be considered (see Peregrine 1985 for a description of this phenomenon). 
In deeper water, the evolution of the spectrum of waves propagating over an uneven 
bottom deserves attention. A numerical approach may be developed through an 
expansion of the wave field in terms of orthonormal functions Sk(x), 

[(%, t ,  = c q k ( t )  sk(x), #(%, t ,  = C p k ( t ) S k ( x ) ,  (87) 
k k 

so that the coefficients also obey canonical equations : 

A Fourier expansion leads to a spectral description of the wave motion (Miles 1977 ; 
West et al. 1987). Although extension of the theory to two horizontal dimensions is 
desirable, it is not trivial and needs further research. Of even more importance is the 
possibility of including dissipative effects in the variational formulation (see e.g. 
Anthony 1987 ; Salmon 1988 ; Vujanovic & Jones 1989). Investigations along these 
lines are awaited which allow for wave breaking and other irreversible processes. 

The author wishes to thank M. W. Dingemans, J. Molenaar, A. W. Heemink and 
A. van Harten for valuable comments, and H. Keyser for assistance with the 
numerical computations. 

Appendix A 
Let 

m = 1,2,3, 

then Dg,-mxg, = Dy. (A 2) 

With D = d/dp, the solution of the linear first-order differential equation (A 2) is 
given by 

The integration constant is fixed by the condition that g m ( p )  remains finite when p 
tends to f 00. Then it follows from (A 1)-(A 3) that 

and by a similar argument 

where m is a positive integer. If we set p-p‘ = -q, resp. p-p‘ = q, then (A 4) and 
(A 5 )  become 
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where it is understood that the derivative under the integral has to be evaluated for 
p‘ = p + q ,  resp. p‘ = p - q ,  

The expression for IA follows from a repeated application of (A 6) and (A 7),  and 
summation of the resulting geometric series, in the expansion (40) : 

d 
[7(P+ d + rl(p-q)l; 

d d dq dq’ - [€@ + q)  7 7 0  + q + q’) 
dq exp n(q + q’) - 1 dq 

I ,  = qomJ0* 
7(P)  

d 
+ ~ ( P - Q ) 7 7 0 - - 9 - 4 ’ ) 1 ;  (A 9) 

dq 

We note finally that the singularity at (q, q’) = 0 is removable when q(p) is a smooth 
function for every p .  

Appendix C 

case of third-order Stokes waves in deep water, we start with the expansion 
To determine the integrand 1/(1 + E )  in (50) from the iteration scheme (41) in the 

m 

~ , ~ = h + C a ~ c o s Z 8 ,  
2-1 

m 

m-0 

and likewise 

with 8 = Khp-wt, p = z/h+O(a/h),  

= C $, C O s m e ,  

according to the definition o f p  in (32). 

1, we encounter integrals of the form 
Substituting the expansions (C 1) and (C 2) into the expressions (42) for lo, Il  and 

1; dq sinAq, 
exp nq - 1 

dq dq’ 
exp n( q + q’ ) - 1 

dq dq’ dq“ 
exp n(q + q’ + q”) - 1 

] ,(A) = 

cos (Aq + Bq’) , 

sin (Aq + Bq’ + Cq”) . (C 6) 
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Applying integration by parts repeatedly we can reduce the double and triple 
integrals (C 5 )  and (C 6) to the single integral (C 4) : 

I,(A) = ;(cothA-l/A), (C 7) Jr dq sin&-sinAq 
expxq-1 B-A ’ I,(A,B) = 

* (C9)  
dq (C -B) sin Aq + (B -A) sin Cq + (A - C) sin Bq 

exp xq - 1 ( C - B ) ( B - A ) @ - C )  

Further we can derive from (C 8) and (C 9) the special cases 

and 

J: dq qcosAq, 
exp xq - 1 I , (A ,A)  = 

I,(A,A,A) = - Jow d* q 2  sin ~ q .  
exp xq - 1 

Now we are able to evaluate the integrals I,, I, and I,. Using the addition formulae 
and the rules for products of sines and cosines, we obtain, in the limit of ~ h +  00 : 

W 

lo = C. z K ~ ,  cos ze, 

I, = 2 2 I K a , ~ , { ( m - ~ ) / m } c o s ( m - ~ ) e ,  

1-1 

m o o  

1-1 m > l  

1-1 m-0 n-0 

+ (m - I) (m - n - 1 )  g(m, - n) cos (m - n - I) 0 
+(-m-Z)(-m+n-Z)g(-m,n)cos(-m+n-Z)O}, 

with g(p, v) = l/pv for p + v < Z < p ,  
=-l/v( ,u+v)  for p < Z < p + v ,  
= l/p(,u+ v )  for I < min (p, p+ u )  

= O  for I > max (p,p+v)  

and I, p, v integers, 1 > 0. 
We then have, to the fourth order in K U ~ ,  

l / ( l+€)  = 1-Io+Il-12 = 1-KKal(l-i/3,)C0S6 
- 2 ( K U , - ~ K K a l p 3 + K a l p l ~ 2 / 1 2 )  COS28-3Ka3COS38. (c 15) 

From (41) and (C 2) we can find pl, p, and p3 to the desired order: 

Substituting (C 16) into (C 15) then yields the expression (55). 
p1 = K a l  ; p, = 2 K a 2  + $K2U: ; p3 = 3Ka3 + 2K2U1 a, + iK3a: .  (C 16) 

Appendix D 
We consider the integrals 

dw In tanh (w) cos hv, 



An explicit Harniltonian formulation of surface waves 453 

The first integral can be evaluated using integration by parts, to yield 

7c R 
C,(A) = --tanh-A for A =l 0, 

2h 4 

C,(O) = -+c.’. J 
The remaining integrals can be evaluated successively, using integration by parts 
and the rules for products of sines and cosines (see also Gradshteyn & Ryzhik 1980 ; 
sec. 3.836 for integer values of A > 0): 

C,(A) = O  for A >  1, #R for A = 1, in for O < A <  1 ;  (D4) 

CZ(4 = 

C3(A) = 0 for 

C,(A) = 0 for 

Finally we note that 1 

D for A > 2 ,  in(2-A)  for O < A < 2 ;  (D 5) 
A 2 3 ,  & ~ ( 3 - - h ) ~  for 1 < A < 3 ,  

i ~ ( 3 - A ~ )  for 0 < A <  1; (D6) 

&(32-12A2+3A3) for 0 < A < 2 ;  (D 7) 

A > 4 ,  &7~(4-A)~ for 2 < A  < 4 ,  

Lese integrals are normalized as follows: 

Jy  C,(A) dA = for all n 2 1. (D 8) 

Appendix E 
According to the definition of the variational derivative, as found for example in 

Broer & Kobussen (1972), we have from (71) and (51) for the derivative with respect 
to 4, 

for all functionsf(x) of some class C{f}. Applying integration by parts and using the 
symmetry of the kernel R,, we find 

(Note that (E 2 )  can be derived in a more simple way from (E 1) by using the 
definition of the derivative of the delta function.) To obtain the variational derivative 
with respect to 5, we proceed as follows. According to the definition, 

(E 3) 
As this equation must hold for all functions f(x) E C, we may take any sequence f,(z) 
approaching the delta function S(x), in (E 3) .  

Denoting the unit function of Heaviside by U(x), we have 

1; dr 6(r  - z ) / r2 ( r )  = [U(z - z’) U(Z’’- x)]/q2(z). (E 4) 
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Hence 

$x" U( x - x") U( 5' - 2) dx" 
- 6% = & + A r  dd&[  
SC 211 -m 2s inhtn l l :d r /7 i (  

(E 5 )  
From (E 2) and (E 5) the  canonical equations (72) follow immediately. 
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